Minimum permanents of doubly stochastic matrices with prescribed zero entries on the main diagonal

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum permanents on two faces of the polytope of doubly stochastic matrices∗

We consider the minimum permanents and minimising matrices on the faces of the polytope of doubly stochastic matrices whose nonzero entries coincide with those of, respectively, Um,n = [ In Jn,m Jm,n 0m ] and Vm,n = [ In Jn,m Jm,n Jm,m ] . We conjecture that Vm,n is cohesive but not barycentric for 1 < n < m + √ m and that it is not cohesive for n > m + √ m. We prove that it is cohesive for 1 <...

متن کامل

MONOTONICTTY CONJECTURE ON PERMANENTS OF DOUBLY STOCHASTIC MATRICES i

A stronger version of the van der Waerden permanent conjecture asserts that if J„ denotes the n X n matrix all of whose entries are \/n and A is any fixed matrix on the boundary of the set ofnxn doubly stochastic matrices, then per(A/4 + (1 — \)Jn) as a function of X is nondecreasing in the interval [0, 1]. In this paper, we elucidate the relation of this assertion to some other conjectures kno...

متن کامل

A simple observation on random matrices with continuous diagonal entries

Let T be an n × n random matrix, such that each diagonal entry Ti,i is a continuous random variable, independent from all the other entries of T . Then for every n × n matrix A and every t ≥ 0 P [ | det(A+ T )| ≤ t ] ≤ 2bnt, where b > 0 is a uniform upper bound on the densities of Ti,i.

متن کامل

On Constructing Matrices with Prescribed Singular Values and Diagonal Elements

Similar to the well known Schur Horn theorem that characterizes the relationship between the diagonal entries and the eigenvalues of a Hermitian matrix the Sing Thompson theorem characterizes the relationship between the diagonal en tries and the singular values of an arbitrary matrix It is noted in this paper that based on the induction principle such a matrix can be constructed numerically by...

متن کامل

Controllability of pairs of matrices with prescribed entries

Let F be an infinite field and let (A1, A2) = [ a1,1 a1,2 a2,1 a2,2 ] , [ a1,3 a2,3 ] , where the entries ai,j ∈ F , i ∈ {1, 2}, j ∈ {1, 2, 3}. In this paper we establish necessary and sufficient conditions under which it is possible to prescribe some entries of  A1 A2  , so that the pair (A1, A2) is completely controllable. © 2011 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1994

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)90111-2